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FOREWORD

This document presents the Final Report om the development and use of
a computer program for '"Hydroelastic Modal Studies" for George C. Marshall

Space Flight Center (MSFC) of the National Aercnautics and Space Administration.

This capability was developed as program additions to the NASTRAN (NASA
i Structure Analysis) computer program and delivered to MSFC for use in the
analysis of the Shuttle ET tank hydroelastic modes.

i Messrs. D. N. Herting, R. L. Hoesly, and D. L. Herendeen of Universal

. Analytics, Inc. were the primary contributors to the project. Mr. R. L. McComas
of MSFC monitored the project and also contributed to the testing of the system.
Messrs. D. Harper and J. Moreman of Computer Science Corp. performed valuable

. aid in implementing the system at MSFC.

The Final Report is divided into three volumes. This, the first volume,
? describes the theoretical basis of the system and results of the test cases.
| Also included are a brief summary of the project history and explanations
and conclusions based on the results obtained in the contract. The second
o volume contains the Program Documentation and the ‘third volume serves as a

guidebook to the use of the system.
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1.0 INTRODUCTION

This report describes the technical effort performed in the implementa-
tion of a generul three-dimensional hydroelastic capability in the NASLRAN
(NASA Structural Analysis) computer program. Although NASTRAN had provided
capabilities for the analysis of compressible fluids with axisymmetric
geometry, the Space Shuttle External Tank Analysis required more general
capability and more efficient solution procedures. The basic approach

described in this report extends the capabilities to provide for arbitrary

fluid shapes, including tilted free surfaces, and allow for more efficient
methods of obtaining the solutionms.

One goal of the program development was to provide a general method
for analyzing the combined mode s.apes of arbitrary fluid and structure
finite element models. The fluid is modeled with three-dimensional solid
elements with options for tetrahedron, wedge, and hexahedron shapes. The
elements are connected to fluid grid points which define the pressure in the
fluid at the specified location. The structure may be modeled arbitrarily
using the existing NASTRAN elements. The fluid/structure interface and the
free surface are defined by the user with special NASTRAN boundary elements.
A special purpose mesh generator program has been provided to generate the
actual NASTRAN data cards for the fluid, the structure, and the boundary
elements for typical tank-type models.

A second goal of the project was to formulate the matrices to provide
efficient soluticas for large-order problems. The structure matrices are
processed separately and may be reduced using matrix condensation procedures
(#MIT) or through a modal formulation using the normal modes of the empty
structure as solution coordinates. The fluid matrices are then transformed
and connected to the reduced structure coordinates resulting in small, sym-
metric, solution matrices. This approach is particularly valuable when
several different fluid levels are to bhe analyzed for one structure. The
structure formulation and reduction is processed only once. The additional
calculations for each different fluid case require only fluid matrix opera-
tions and svlution processing.

1-1
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User convenience was provided in the system with the implementation of
several alternate solution patha and modeling options. These options, which
allow a wide variety of problem types and provide the user with efficiency

and accuracy trade-offs, are summarized below.

e The Direct formulation option uses structure grid point coordinates
and free surface displaccments as solution degrees of freedom. The
structural matrices may be reduced using the NASTRAN matrix conden-
sation technique (ASET or @MIT data) for more economical processing

of large-order problems.

¢ The Modal formulation option uses the mode shapes of the empty
structure as generalized solution coordinates. With this option,
the structure may be represented accurately by relatively small

matrices.

® Gravity effects are provided which affect both the free surface
displacements and the structure~fluid interface. Free body motion
of the whole system is not constrained as in scme other methods.
The gravity effects may also be ignored by simply providing

single-point constraints on the free surface pressure coordinatec.

¢ Symmetric systems with symmetric or anti-symmetric solution cases
may be modeled by providing single-point constraints on structure

displacement and fluid pressure degrees of freedom.

® Compressibility effects may be provided for cases in which the fluid
is completely enclosed. (Any constraints on the fluid pressure
coordinates will act as an opening.) A factor is provided to define
the overall pressure versus volume change. An alternate is provided

to constrain the volume change to zero for pure incompressibility.

® Restart logic is provided in the DMAP (Direct Matrix Abstraction
Program) to allow changes in the fluid model without reformulating
the structure matrices, or generating structure modes. A user

parameter provides this control, independent from the NASTRAN logic.

All of the above _apabilities were specifically designed for the large-
order finite element models anticipated for use in the analysis of the Space

Shuttle tanks. In many c2ses, the actual computer hardware availability

1-2




would be a significant factor in solving the real structures. Thus, the
desiga contained the alternate paths to obtain either aczurate results with
long run times or less accurate results with chorter run times and faster

turnaround.

The effort for the project was subdivided into five major tasks, each
defined by delivery items and milestones. Brief descriptions of the tasks

and the problems encountered are summarized below:

TASK I - Preliminary Spggifications: The complete theoretical design,

user inputs, and program flow was defined in this documentation.
The report was delivered on schedule within one month of the con-

tract start date of March 1, 1976.

TASK IT - Phase 1 Program: The basic hydroelastic capabilities were
installed in a Levell5.9 version of NASTRAN. The program was
installed at MSFC on the IBM 360/55 computer on schedule during the

week of April 19. The basic capabilities included the fluid elements,

free surface elements, and non-overlapping fluid-structure boundary
definitions. Results were obtained for the hemispherical tank test

problem.

TASK IIT - Phase 2 Program: The final version of the program was
installed on the Level 16.0 version of NASTRAN. The delivery, on

August 9, 1976, to MSFC was delayed approximately one month due to
delays in the delivery to MSFC of this version of NASTRAN by the NASA

distribution center.

TASK IV - Demonstration and Training: This task consisted of three

pacts - (1) demonstration of the system using small problems with
known solutions, (2) instructing MSFC personnel in the use and
maintenance of the system, and (3) assisting MSFC personnel in the
modeling and execution of the large-order Space Shuttle tank problems.
The first two tasks were performed at MSFC during the week of

August 9, in conjunction with the program delivery. The third task

continued through the remainder of the contract.

TASK V - UNIVAC 1108 Conversion and Final Report: The original schedule
assumed that the 1108 version of NASTRAN Level 16 would be available
0 NASA by October 1976. The IBM hydroelastic program would then be

1-3
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converted to the 1108 at MSFC by UAIL. However, the actual receipt
of the 1108 Level 16 NASTRAN did not occur until January 1477,
delaying the project by three months. The final report, which
consists of program documentation, awaited the 1108 conversion and
the execut:ion by MSFC of the large-order Shuttle tank problems.
However, preliminary versions of the user documentation were
delivered to MSFC in August 1976, thereby allowing knowledgeable
use of the program. This final report, contained herein, completes

the outstanding contract deliverables.

The theoratical approach and the detailed analytic steps used in the
formulation of the problem are described in the following theoretical
approach chapter. The results of the test and demonstration effort are also
summarized in this volume of the report. Volume II of this report contains
the descripﬁions of the user-supplied data to the program and instructions
for its use. Volume III contains the programmer's reference material

describing the new code and modifications to NASTRAN.




2.0 THEORETICAL DEVELOPMENT

in this section the theory is developed for the 2eneral three-dimensional

hydroelastic analysis in NASTRAN. Both the structure and the interacting

fluid will be idealized as general, three-dimensional ‘inite element models.

Effecte of free surfaces and steady-state gravity will be included. Tha

-fluids are assumed to be incompressithle, irrotational, and non-viscous.

Swall motions of both structure and fluid
will be analyzed.

celav’ve: to the static solution -

The basic development of the finite _“ement ¢: :2tions for small motions
of fluids is described in Reference 1.

are cast in the form of inte

In ReZ_rence 2, tha basic equations

grals representing the time derivatives of Energy
and Work using the fluid pressures as the unknown coordinates.

pressures, rather than three displacements, will be us

The scalar
ed as degrees of freedom
at each point in the fluid, which avoids extraneous rotational motions and

directly provides for incompressibility. The disadvantage is that the struc-
ture and fluid are not auftomatically connected at their boundary. The
pressures in the fluid must be related 1o the displacemrents of the boundaries

through area factors and flow relationships.

2.1 FLUID FIELD EQUATIONS

In Reference 2 the fluid fiald equations are developed in the form of

energy integrals using Principles of variational calculus.

The basic result
for the compressible case is the equation:

2
A r o w)a]-Lafin) a0 o

where:

o

is the pressure

is the time derivative of pressure
is the bulk modulus

is tha mass density

is the volume

i< T ™ o

[ 9

is an incremental surface vector (outward)

is the vector gradient operator

O’—Q

is the variational operator

e




With the incompressible fluids, the bulk modulus is assumed infinite and
2
the p term disappears. On the exterior surface the pressure gradient may be

replaced with the acceleration vector using the basic momentum equation:

Vp = - pii (2)
Equation (1) therefore becomes:

6}%—(Vp-Vp)dV+[ &pi - dS = 0 (3)
Vp S

or
SU+8Ww = 0 4)

In the finite element method of solutiomn, a set of variables, py, equal to
the value of p at specific points, is chosen and the volume is divided into
subregions, called fluid elements, with vertices defined by the location of
the variables. As with structural finite elements, a "stiffness" matrix [K]

is formed frcm the potential energy U by the equation:

2
f 07U
. K = g (5)
; i dp, 9p. .
; | h| Py 9Py

The "equivalent” potential energy for each subregion is, from Eq. (5),
U = —1—Vp « Vp av (6)
v 20

The pressure field for each subregion (fluid element) is dependent on the

pressures p; at its vertices.

The second term of Eq. (5) defines the "load" vector, {Q}, on the boundary,
which excites the fluid. For each point j on the boundary the load-ng value is:

3 (8w
q - g{g;f; 7

Since the accelerations, i, are defined by the structure, : transformation

matrix may be developed from Eq. (7) such that:
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{Q} = [B]{i} (8)
where
By = i f pu a3 9
3 Py Uy Jg

Note that the unitg of B are area ang the units of Q are volume per time

squared.

If we combine Eqs. (4), (6), (7), ‘and (8), the resulting matrix equation
relating the etructure and fluiq ccordinates ig:

K16} + [B)(5} = o (10)

On the other hand, the fluid effects the structure by applying forces over
the structure surface area. The incremental wnrk done on the Structure, ‘
Ws, is: i

W = f P(du * d%) (11)
S

The force on each point structure degree of freedom, Fﬁ, is obtained from tha

work by the equation:

On each finite boundary ares the displacements u are functions of the grid
point displa:ements uj. Equations (11) and (12) are evaluated resulting in

the transformation natrix, A, where:

{F} = [A]{p} (13)
and
A = -—i— [ -~
1j du, Jp pu dS (14)
i 7% o

Comparing Eqs. (9) and (14) we observe that




a] = (57 | (15)

If [Ms] and [Ks] are the mass and stiffness matrices of the structure, the

matrix equation for the structure coordinates is

M°1{&} + [K°1{u} - {F} = {o} (16)
or, from Eq. (12):

1{EY + [K°1{u} = [Al{p} = {0} (17)
Equations (10) and (17) become the system of equations for a solution.

2.2 FINITE FLUID ELEMENTS

Three types of fluid elements are used to represent the three-dimensional

fluid: the 4-point tetrahedron, the 6-point '"wedge," and the 8-point hexahedron.

The wedge and hexahedron elements are fabricated from threz and ten tetrahedra,
respectively, as zhown in Figure 1. The pressure function within each tetra-

hedron is assumed to be a linear function in three directions, or:
P = 4, + q3x + q,y + q52 (18)

The transformation between the pressures at the grid points Pi’ i=1,2,3

and 4, and the coefficients q may be obtained from the matrix equation:

—~ —

P1 s n &%
P 1 x, y, =z q
{p} = 2y - 2 72 2 1 (19)
P3 1 %3 y3 2z, eqz
Py bR Yy %) N9

The matrix in Eq. (19) may be inverted, giving the matrix H, where

{q} = [n){p} (20)
or
A = §‘“1<ij (21)




T R TS RS TR T TR AT T TR TSN L R TR TR WA - s R A At SEREEEEE S 2 4 Al A s 4

STRUCTURAL ELEMENTS
K
F-
(a) Tetrahedron.
[ i 3
1.3
. 2
[} 1 s ‘
L
1 1 16— — /. 3
2 2
{b) Wedge and One of its lix Decompositions.
8 ?
]
S 6
|
|
j
1 2
s 8 3 [ ] F} 7
s s N0
&
AN
3 \ \3 .
1 1
2 1 1
? ? T L] ?
s 5 5 5‘
& k] N !
1 2 »
H 2 2

(c) Hexahedron and its Two Decompositions.

FIGURE 1. THREE-DIMENSIONAL FLUID ELEMENTS
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The vecter gradient of the pressure is obtained from Eq. (18), giving:

- Vo = qpi+qy)+ g4k (22)
From Eq. (5) in the previous section, the energy functfon, U. in the element
%7 is:
M
.- v = % l.(vp. Vp) dv = 1 (q2+-q24-q2) * Vol (23)
§ 2 Jyo1P p 37974,
. ol .
g_ From Eq. (6), the stiffness matrix terms for the element are:
2
. au
¥ . = — 24
L 1] 9py P, 24
g- Using the "charn" rule for differentiation, we obtain
; 3 3 2 3q, 9q
i 1 o U K L
{ K = =>0 > (25)
'~ 13 23T =1 %9 %9y dpy Opy
.E and from Eq. (21):
_ : 3 3 1
N Ky = > > o Skalieityy (26)

(Note: le =0 1if k # £ and sz =14f k = 2)

Equation (26) may be cast as a matrix product defining the fluid "stiffness"
matrix for the tetrahedron, [Kf], as:

kf) = FLRIE (273

The wedge and hexahedron elements are generated by adding the appropriate
stiffnesses for the component tetrahedra.

2.3 FLUID/STRUCTURE BOUNDARY MATRICES

i As defined in Eq. (14) of the general development, the area matrix [A] is
) defined as
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_ d

Aij = 'a‘JTpf pu dS (28)
i 3 g

where u and p are the displacements and pressures at the surface, S. The

intersecting areas of the structure and the fluid are specified by the user

as fluid-structure element pairs. From elementary geometry, the locations of

the fluid points and the structure points are obtained in a coordinate system

on the fluid face. Equation (28) is evaluated for each intersecting area of

structure and fluid. For simplicity, only triangular structure elements are

considered below. Quadrilateral elements are treated as four overlapping

triangles.

Several possible examples of overlapping areas are shown in the sketch

below. !
Fluid
Fluid
Structure
(a) Structure
(b)
Fluid Fluid
(c) (d)

Clearly, the number of combinations is too numerous to identify each case
and provide a specific set of equations. Rather, a general algorithm will be

developed below. The basic logical steps, listed below, will apply to all
cases.
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the fluid area.

If all structure points lie outside the area, search for any intersection

oints, e,, where two lines cross.
P i*

they are disjoint. For the first case, the inside set of points determines
the boundary and the search below is skipped. When the areas are disjoint,

a fatal error has occurred.
If intersections occur, the overlapping area is determined as follows.

Starting with a common edge point or the location of 3 Structure point
lying in the fluid area, the points describing the polyhedron area are
calculated. An example is shown in the sketch below.

S ,
i
I

Structure

The .ist of points, s, defining the area are:
8; = structure point
e, - edge point

f2 - fluid point

Fh
I

3 fluid point

e, - edge point

The area of the Polyhedrun is obtained from the line integral:

A = - } y dx (29)

2-8



Using the finite element displacement functions, the coefficients C (x sY )

are evaluated at all points on the polyhedron. The pressure applled to each
point in the area is:

= LC_.p, 0
P % Cs5P;5 _ (30)

where Py is the pressure on each polygon point and pj is the pressure at
corner j of the fluid element.

In triangular fluid elements the pressure distribution is
P = q, *qx+q,y (31)

Evaluating the equation at the four corners results in the formula:

%% = P
= X ) (32)
9 X, P 7P
q, =% Py = Py - 3 (p, = py)
2 yy 3 1 x, 72 1
The coefficients C(x,y) are therefore:
x y
€1 = L1~ El'*"JL('i! - )
2 Y3\*%3
3 Y%
2 = X T \% (33)
- 2 Y3\%3 ’
y
Ci3 = _i
Y3

On quadrilateral areas, an isoparametric distribution of pressure is used.

The isoparametric coordinates are shown in the sketch below.

2-9
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The pressure distribution is:

P = flpl + fzp2 + f3p3 + fap4 (34)
where: -fl = 1-85-nmn
£, = E(1-n)
£, = &n
f4 = (l - E)T'l
and the corresponding location definitions are
x(E,n) = £1x, + £,x, + £ix3 + £,%,
(35)

y(&,n) By + 6y, + £y, + £,

If Xy and Yy for a point on the element are given, the twn equations
are used to obtain the two unknowns £ and N. Eliminating n, a quadratic
equation results for £;:

at2 4+ g, +e = o (36)
i 1
where:
a = - x2(Y3 - Y4)
T R e A T A (7

€T XY, - X,

2-10




After Ei is obtained from the equation above, the value for n calculated

from the equation:

- y
i v, + E(y3 = ¥,)

(38)

The'resulting equation for the pressure coefficient at point i due to

pressure at corner grid point j is:

6. The loads will be distributed to the structure points according to the

location of each polyhedgon point on the structure area. The total force
and center of force will be preserved. For each point, i, on the polyhedron,
the load factors for the structure points at locations (xl,yl), (xz,yZ), and

(x3,y3) are obtained from the determinants of matrices as shown below:

Lox vy
= 1
fli = 2 1 X, ¥, (40)
1 x3 74
1 xl yl
= 1 :
f20 = 2| xy Yy (t1)
1 x3 y3
1 xl y1
= 31
f31 = 3 1 X, ¥, (42)
x5

7. The pressures on the polygon points are integrated over the area according

to the following rules:

a. The average pressure of all puints acts over one-half the area,

located at the center of the area.

b. The pressure at each point acts locally over an area of A/2N.




Wi g

| ST

c. The total force at the center is divided equally among the polygon

points. The local forces are applied at the adjacent points.

[T

The resulting equation for the effective polygon area coefficients is:

F = g Aisps ‘ (43)
g_
. where: i
- j
A i
| ) Nw-1) Stk |
Aks = f
A -
2N 8=k ‘

The résulting area factor matrix is defined by the matrix product:

[a,.1 = (£1%[AlLC) (44)

ij]

In order to provide force vectors in three dimensions, each row of

the matrix A is expanded to three rows by multiplication with the unit

normal vector kl.

2.4 GRAVITY EFFECTS

When a steady~state acceleration such as gravity is present in a hydro-

elastic problem, additional terms must be added to the fundamental equations

to account for the steady-state pressure gradient. In the fluid formulation,
the Euler equations assume that the pressure is defined at points fixed in
space, and the fluid particles flow across the point. 1In the structure for-
mulation, a Lagrange assumption is used whereby the grid points remain

.~ attached to the moving system, and the forces are applied at the displaced
location. These contradicting assumptions require formulation of additional

matrix terms as developed below. .

2.4.1 Gravity Effects on the Structure

A change in force on the structure is illustrated in the sketch below.

R sdi

- i

i | 2-12
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¢, Original Position
Displaced Position

X
z
Stru;ture
The normal force, Fn, required to support the pressure is: |
F o= -Alp, + 0@ - u)la - 45)

The term Api is included in the area matrices discussed previously. The
second term on the right-hand side of Eq. (45) takes the form of a stiffness.

The matrix takes the form:

= &y <t , (46)
F u CF '
Z Z
where
0 n -
K] = - p|g|a x (47)
0 nz

Note that the matrix is not symmetric if n # 0. This violates the fundamental

rule that symmetric system matrices must occur for the conservation of energy.

Another method of viewing the problem resolves the non-symmetric issue.
If the structure moves, the total fluid welght changes as illustrated below.

\\ “4———Displaced Position

/

Original Position ———/

'\,\
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The additional weight on the structure, w, due to the motion 1is:

Vo= pghu = pgA(n - u) w8

Since each point may move independently of the others, the increased vertical

force must be applied locally and the force required to support the load is:
F, = - pgA(n * u) © o (49)
The corresponding stiffness matrix is:

0 0
(K] = - pga n (50)

n
X Z

Compariné Zgs. (47) and (50), we observe that the lower right

-hand terms are
equal, but the off-diagonal terms are reversed. The conclusion is that each

approach missed an off-diagonal term, and the true result is:

0 n
[AK] = - pgA n n (51)
X z :

These stiffness terms may be processed along with the fluid-structure area

coefficients described in Section 2.3. The intersecting structure fluid areas

are used to define the factor A. The displacements and resulting forces are

assumed to be variable on the surface, dependent on the connected grid points,
and the actual stiffness will be:

(Bux auz Buz 3u‘> 0
K = - pg f + - X
ij N Bui auj Bui auj

z
+ ————n dA
Bui'c)u:| 2z

where u, and u, are linear functions of the grid point displacements. These

integrals are evaluated in a manner similar to those developed in the area
matrix calculationms.
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2.4.2 Free Surface Effects

A free surface is defined as a moving boundary with no restraints. When
gravity effects are neglected, the boundary condition, p = 0, may be enforced
by simply applying single-point constraints (SPC) to the input which causes
the rows and columns corresponding to zero pressure to be removed from the
matrix equations. However, when gravity is present we must remember that the
pressure may not be zero since it is actually measured at a point fixed in
space. For an upward displacement, ug, of the free.surface, the pressure at

a point defined at the surface is:
P = Pgug (53)

(For a downward displacement, it is alsc convenient to use the same equation,

measuring a fictitious negative pressure above the surface.)

In the actual solution of the free surface points, it is convenient to
implement Eq. (53) in the following form:

- Ap + pgA ug = 0 (54)

where A is the free surface area associated with the fluid point. The terms
in the above equation may be implemented directly into the matrix formulation.
In effect, the free surface points are treated as though they were structure
points, although no structural stiffness is present. The area factors A are
identical to the fluid/structure interface matrices defined previously in
Section 2.3. The terms (pgA) are, in effect, positive springs providing the .
stiffness terms, [ng], for the normal displacements, uf, and causing the

"sloshing" modes.

Furthermore, the effects of the displacements at the frae surface excite

the fluid in the same manner as the structure displacements. The generalized.
forces on the fluid are:

g} = - 817, (55)

where [Afgl is a diegonal matrix of area factors conneeting each free surface

displacement to the corresponding pressure degree of freedom.
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2.5 SYSTEM MATRIX SOLUTION

The previous development has provided the basic matrix equations to
define the fluid, the fluid structure interface, and the free surface. 1In

review, these equations are:
FLUID:‘
(K"1{p} + [a 170} + (a1} = {0} (56)
STRUCTURE :
DIGEY + T + 0K M) - A1) = () (57)

where [M°1, [K®], and {F} are the conventional m.ss, stiffness, and

load matrices for the sivucture.
FREE SURFACE

[K%]{uf} - [a){p} = {0} . (58.)

2.5.1 General Formulation

For the general case, when gravity is present, all the above matrices

occur. The desired form of the solution matrices are:
(MG} + [R){&} = {Pp} (59)

where {ii} is a vector containing both structure and free surface displacements

and {p} 1is the applied load vector. From Eq. (5€), it is apparent that:

e} = - i AN E (60)

where [K]? = [Az EAE] (61)
u

and {a} = Tfi (62)
f

Substituting into Eqs. (57), (58), and (59), we obtain:

3
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M 10 7
M = [-24-- J+ (31517 E) T (63)
0.0
L
]
_ K +Ax
K] = [-2-—m- Bt (64)
| K
— 1

We observe that the matrices {M] and [K] are symmetric, and may be processed

as normal structure matrices.

Unfortunately, the effect of the fluid mass terms in Eq. (63) is to fill
the mass matrir, resulting in potentially time-consuming solutions for large
structures. However, it is typical for large structures that a reduction

procedure is employed. Defined symbolically, this reduction may be defined

as:
{us} = [6]{u} | {65)

where the vector {ua} is defined by a much smaller number of degrees of freedom
than {ng}. Components of the vector {us} are removed by application of con-

str .ints through the "Guyan" reduction procedure or through 2 modal formulation

> the columns of [G] are eigenvectors of the empty structure ncrmal modes.

Tue structure matrices are reduced accordingly with the equations:

M) = [G]T[Ms] [G] (66)

K] = 167 _1l6] (67)

Equation (60) may be rewritten as:

7} = kAT (68)
]
where (A" = Al 1AT) (69)
ua
and {u} = -l';" (70)
f

2-17



A Lia Al Bt Anci
e e s ARG i i SR NN N N G

The raduced mass and stiffness matrices are:

o [Flo -

Moo= |-+ [ATIRCT1[AT] (71)
010
F a + AR8 i 1

R = 5____é*_\__:__§ (72)

where Ak = GTAKgG (73)

Note that, as the size of the matrix [A] is reduced, the evaluation of the

matrices for Eqs. (71) and (72) will be more economical. 1In tt. actual

formulation, the columns of the matrix [A] may be treated as load vectors on

the structure, and the NASTRAN reduction procedure for the load vectors may
be applied directly. The gravity "stiffness" matrix [Eﬁt] may be reduced in

the NASTRAN system with the same algorithm as the mass matrix reduction process.

2.5.2 Non-Gravity Case

When tt= effects of gravity are

such that p = 0. 1In this case,

ignored, the free surface is constrained

the free surface points are removed from the
solution vector, and the solution matrices are:

] = ]+ iR e (74)
&l = Ix] (75)
where {u} = {u} (76)
w1t = 1e17ra )" 1)

and [Rf] is the matrix [Kf] with free surrace rows and columns removed.

2.5.3 Completely Enclosed Fluid

When the fluid boundary is completely enclosed by the structure and free

surfaces and no constraints are applied to the fluid points, the incompressible
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fluid effects must be considered. The incempressible fluid, in effect,

i provides a constraint on the motions of the boundary such that the net flow
into the fluid is zero.

| Furthermore, the fluid matrix [Kf] is singular tecause a constant pressure
defines zero flow. Mathematically, a unit pressure vector, defined as {I},

{ produces the result:

S [k 1{1} = {0} (78)

Since the matrix th] has a singularity of order one, a constraint must be
; f supplied. Because of incompressibility, we know that the total flow must be

zery. The basic pressure-flow relationship is:
o | Kl{p} = {q} (79)
% - The "average'" input flow is:
‘ T 1
'. . Q = ﬁgQi = 3 l1Ha} (80)

where [I] is a row vector containing unit values.

Subtracting the average flow from each point, we obtain a flow vector,

{Q'}, with a zerc total value, where:

{@'} = {q} - qf1} (81)
o @'} = [l - § {thii{e} (82)
= [u{q} (83)

The pressure is obtained by removing one row and column, and solving the

basic matrix equation in partitioned form:

K Ik 0 Q!
i “, vom] - [@1.} (8%
311045 P i
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vhere o is an undetermined constant.

Noting that the {I} vector may be
ignored, we obtain:

have an average of zero, or:

P = § LG} 48] = o

(86)
Therefore, ¢ is obtained from the equation:
o = =% T){p!) (87)
N i
Note that Eq. (84) is cempletely satisfied if Eq. (87) is substituted into
Eq. (84) and if:
N N
Kip + _S__ Kij = 0 ‘ (88)
j=2
N
and Ql = QW =0 (89)
1 3=2 j
The first condition is satisfied by Eq. (78). The second condition ig
satisfied by Eq. (82), thereby producing a unique solution to the basic
equation,
The resultant solution pressure vector {p} is:
-3 11l
{p} = i {pj'} (90)
[1] - & {1h1
Observe that the Pressure transformation matrix in. Eq. (90) is identical
to the transpose of the flow trarsformation, [Hj], where:
R} = (w1} (91)
T, 4
{p} = (4, ] {pj} (92)
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and [Hj] = [--% {1}5[1] - %-{1}111] (93)

The matrix "inverse' may be written symbolically as:

[Kf]"1 = [Hh]T[ij]'lluj] (94)

Furthermore, it may be proven by examples that [ij] may be obtained by par-
titioning any fluid point, py» from the matrix. If the matrix [Kf] is singular
(of order 1), the results are exactly the same regardless of the choice.

2.5.4 Incompressible Fluid Restraint

As described in Sectioa 2.5.3 above, the net volume changa due to boundary
movement is eliminated from the fluid inertia matrix. Howzver, the incompressi-
bility of the fluid requires that the volume change due to structure and free
surface displacements be restricted. This constraint could be implemented by

supplying a constraint equation of the form:

AVol = 5 T A,,u, = 0 (95)
iy 7313
or, in terms of the matrices:
AVl = [T][A}T{u} = o (96)

For this approach, one of the displacements, uj, is removed from the
matrices, redistributing its associated mass and stiffness to the other degrees

of freedom.

In the alternate method, we add a compressibility factor such that the net
volume change will be small. If we define the factor, B, such that for the

static case:
{p} = {1} B AVol (97)

then the forces, {F}, on the structure are:

{r} = [Al{p} (98)

or {F} = [k u} (99)

where (K1 = s(Al{1}1)[A]" (100)
2-21
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The matrix [Kc] provides for the overall compressibility of the system
when the fluid is completely enclosed. Tt is added to the system stiffness
matrix and acts as a single sprin, connc. :ing all surface displacement degrees

of freedom.
The factor B may be obtained from the physical properties. The approximate

value is:

a .
B = -";—O—l- (101)

where a is the speed of sound in the fluid.

Extremely large values of B are to be avoided, since matrix numerical con-
ditioning problems will result when the terms in the matrix [Kc] are orders
of magnitude larger than the structure terms. For most realistic fluid-

structure combinations, this problem will not occur.
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3.0 TEST RESULTS

gz oo An extensive test program was performed on the modified NASTRAN system
- during the coding effort and following the delivery of the system. The
purpose of the program testing was to ensure correct code and validate the
2 theoretical assumptions. In the first stage of check-out, problems consisted
of simple one and two fluid element shapes in which the results could be
hand-~checked for correctness. This was followed by larger order, more

realistic test and demonstration problems.

4 The cuoice of test and demonstration problems had to be limited to
cases with known results from experimental tests and/or published analyses.
Larger order detailed models representing the Space Shuttle External Tanks
have also been analyzed by NASA using the program. Results of these tests
are forthcoming from NACA. The basic test and demonstration problems

analyzed by UAL are described below.
3.1 HEMiSPHERICAL TANK TEST PROBLEM

! 3.1.1 Problem Definition

The solution for axisymmetric sloshing and hydroelastic modes in a
full hem spborical tank have been obtained by several methods of analyses
{Refs. 3, 4, 5 and €]. Although the NASTRAN program was developed for
- general shapes, axisymmetric geometries such as this problem may be solved
by modeling a wedge~-shaped section with a minimum number of elements and

grid points

The NASTRAN model, shown in Figure 2, represents a 15° sector, repre-
sented by a single layer of elements. The fluid is represented by wedge,
tetrahedron, and hexahedron elements. The structure is modeled by standard
NASTRAN plate elements. The large sector angle and course mesh were deliver-
ately chosen as representative of the expected modeling practices to be used

when non-axisymmetric three-dimensional problems are generated.

3.1.2 Comparison of Results

Comparisons of natural frequencies for both slosh modes and structure
interactions (bulge) modes are presented for the reference studies and
NASTRAN in Table 1. Slosh mode shapes are shown in Figure 3.
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= Radius = 200

= Thickness = 0.1

Elastic Modulus = 1.0x 107
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ps = Structure Density = 2.59x 10~%
pg = Fluid Density = 1.06 x 1074
g = Gravity Constant = 386.90

FIGURE 2. FIFTEEN DEGREE HEMISPHERICAL TANK MODEL
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TABLE 1. COMPARISON OF NATURAL FREQUENCIES FOR
VARIOUS SOLUTIONS OF HEMISPHERICAL TANK

5 Natural Frequency - Hertz
| Type Mode 3D
Ref 3 Ref 4 Ref 5 NASTRAN
; 1 0.46 0.43 0.43 0.45
2 0.62 0.62 0.62 C.67
; Slosh
1 3 0.75 0.81 0.76 0.88
4 0.86 1.00 0.90 1.13
: 1 6.69 7.26 6.62 6.87
Bulge 2 9.92 11.47 10.25 10.99
3 12.59 14.56 12.35 14.76
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FIGURE 3. MODE SHAPES OF AXISYMMETRIC SLOSH MODES (1-4)
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The modal frequencies of the present analysis compare reasonably well
with those obtained by other investigators. The higher slosh mode frequencies
could be expected to match more closely those presented by Guyan if the num-
ber of free surface elements was increased from 8 (NASTRAN) to 21 (Guyan).
This conclusion arises from the common observation that modal frequencies
tend to decrease as the model Lecomes more refined by increasing the number
of finite elements. This explains the close match in slosh mode frequency
for the first few modes and the divergence of results in the later modes.

Also contributing to the differeuces in the NASTRAN results is the effect

of representing the axisymmetric motions by modeling a 15° sector whereas

the other analyses solve the axisymmetric problem directly. The actual
integral over the 15° sector_in NASTRAN represents a smaller area and,
therefore, higher frequencies. This difference would be smaller for smaller
sector angles. However, with 8 free surface elements, the present analysis

results in good slosh mode frequency agreement (0-20%).

3.2 SRI TEST TANK

As a further test on the performance of the 3-D analysis of a typical
problem, a series of analyses were run on a real tank model. This actua?
model was built and tested by Southwest Research, Inc. and the experimental
results are described in Reference 6. Other analytic results were obtained

using the DYNASPR axisymmetric program described in Reference 7.

The finite element NASTRAN model is shown in Figure 4. Again, a 15°
sector was modeled with one layer of elements and two layers of grid points

to solve for the axisymmetric modes.

The mesh size was chosen such that when 1t was extended to a three-
dimensional half model (12 layers), the number of degrees of freedoum (~ 2900)

would be near the maximum for reasonable running time.

The effects of nearly all of the available options in the hydroelastic

The results are summarized in

system were evaluated with the SRI model.
Table 2.
Table 3.

The error ratios in terms of the test results are given in

Each of the analysis cases is described below.

Test Results ~ Obtained from Reference 6.
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TABLE 2. COMPARISONS OF FREQUENCIES FOR SRI TEST TANK

Mcde Trequencies

Analysis Case
Mode 1 | Mode 2 | Mode 3

Test Results 495 835 1255
DYNAS@R Program 531 807 1179

NASTRAN - Phase 1 Progiam

Model A - Comp, 519 822 1239
Model B - Comp. 516 826 1239
Model B - Incomp. 541 828 1240
Model B ~ 1/6 Comp. 423 821 1234

' NASTRAN - Phase II Program
t (Model B - Comp.)

Direct - Not keduiced 513 809 | 1174
Direct - Reduced 612 914 1279
Direct - Ignore G 539 811 1175
' Modal - 30 Modes 568 814 1185
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TABLE 3. COMPARISONS OF FREQUENCY ERRORS
FOR SRI TEST TANK

Freanency Diffarence
gzn Anaiysis Case Ratios (%)
Mode 1 | Mode 2 | Mode 3
Test Results 0 0 0
DYNASPR Program 7.3 -3.35 -6.1
NASTRAN - Phase I Program
1 Model A - Comp. 4.85 | -1.56 | -1.28
2 Model B -~ Comp. 4.25 -1.08 -1.28
> 3 Model B - Incomp. 9.3 -0.83 -1.20
4 Model B - 1/6 Comp. -12.5 -1.68 -1.67
NASTRAN - Phase II Program
5 Direct - Not Reduced 3.7 -3.1 -6.5
6 Direct - Reduced 23.6 9.5 1.9
7 Direct - Ignore G 8.9 -2.9 ~6.4
8 Modal - 30 Modes 14,8 -2.5 -5.6
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DYNAS@R Program - The tank was modeled and run at MSFC on the DYNAS@R

Program.

NASTRANF— Phase I Program - The first system delivery contained limited

options and a crude method of calculating area coefficients. Nc over—
1.pping structure/fluid elements were allowed. All runs were made ]

using the direct formulation method with no matrix condensation.

1) Model A - Compressible - This model was generated by simply con-
verting the DYNAS@R data to the NASTRAN format. The mesh was similar

to that shown in Figure 4 except that only four-sided elemesnts were
used. The compressibility factor was obtaired from the properties

of water,

2) Model B - Compressible ~ This was the basic test case using the

model shown in Figure with overall compressibility of water. The

second and third modes were excellent but the first mode was

a0 n et S

suspiciously high.

3) Model B - Incompressible - The incompressible opticn was used in

this model to determine its effect. The first mode became werse but

the second and third modes were hardly affected.

4) Model B - 1/6 Compressibility - The compressibility factor was

divided by a factor of 6. The first mode frequency became lower

than the test results with no change in the second and third modes.
Tnis indicated that fluid compressibility had affected the test
results. The disriacemert: in the first mode were primarily bulging
of the tank, with nearly uniform vertical motion of the free surface,
resulting in a net total pressure over the fluid interface. The
second and third modes ccntained little net free surface motion and

net pressure was srall. The actual compressibility of the water in

the test was probably lower than the theoretical factor due to

] aeration of the water during the vibration testing.

NASTRAN - Phase II Program - The final delivered program contained more |
accurate area factor calculations and the complete set of user options.

The tests given below were run on this versioa. For comparison wich the

preliminary version,Model B with the calculated compressibility was used

: “ as the basic model.
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5)

6)

7)

8)

e S el I

Direct - Not Reduced - The direct method without matrix condensation

was used to compare results with the Phase 1 program. Results for
the first mode were improved but the second and third modes became

slightly worse.

Direct - Reduced ~ In this case the solution matrices were reduced

from ~257 degrees of freedom to ~60 degrees of freedom to represent
only shell displacements at every other point. This reduction would
be equivaleut to reducing the three-dimensional model to ~300 degrees

of freedom for eigenvalue extractioa. All modes incre-sed in frequency.

Direct — Ignore Gravity - The gravity effects were removed from the

problem which reduced the solution size and the running time. The
small change jn results indicates that this is an efficient method for
obtaining structure interaction modes. Low frequency slosh modes may

not be calculated with this method.

Modal - 30 Modes - The modal formulation was used in this problem

to reduce the structure matrices to 30 modal coordinates representing
the modes of the empty structure. The error in the first hydro~
elastic mode was due to the fact that its shape was not well repre-
sented by the mode shapes of the empty structure. Only three of the
30 empty structure modes participated to any extent in the first mode

of the combined fluid and structure systems.

3.3 TEST RESULT COMMENTS

From the experience of running the test and demonstration problems,

several conclusions may be made regarding the NASTRAN hydroelastic system.

These are listed below.

1.

Accuracy of the system was bettar than expected for the mesh sizes
used in the demonstration problems. With only linear elements and
averaged area factors representing the fluid, three good slosh modes
were obtained from only eight degrees of freedom. It appears that
the accuracy for hydroelastic modes is limited more by the existing .

NASTRAN structure elewents than by the fluid formulation. Results

indicate that 15° sectors are adequate for a cylindrical or spherical
shaped flrid medel,

3~10
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The results were relatively insensitive to modeling procedures. On
each of the problems, different methods of subdividirg the fluid
space into elements were tested. For similar mesh sizes, the changes

in results were insignificant.

The use of either Modal Formulation or Guyan reduction to condense
tne structural degrees of freedom tends to increase the natural
frequencies of the system. For the relatively small demonstration
problems, their effects on execution cost were small. However, the
hydroelastic formulation produces dense solution matrices. Large

order problems will require one of these reduction methods.

The drawback to the Guyan reduction method is that it poorly
represents the motions of curved surfaces with uniform loads. For
best use of this method, all displacements normal to the surface
shouid be retained. In-plane displacements may be omitted without

affecting results since they are not connected to the fluid mass.

Modal formulation is best used when the empty-structure modes
are similar to the coupled fluid modes. Some of the low frequency
combined-system modes do not occur as the lowest modes for the empty
structure. Thus, for some cases, many modal degrees of freedom may

be required to produce accurate results.

Although free-surface gravity effects are necessary to obtain pure
sloshing modes, their effect on the hydroelastic modes is small for
most problems. The alternate method of constraining the free surface

pressures to zero is more efficient and requires less data input.

The overall compressibility factor used in the new method provides
a simple, efficient manner of treating enclosed fluids. It will

produce more accurate results for very stiff tanks such as those

used in the SRI demonstration problem.
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